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(a) )
Figure 7.12 Magnetohydrodynamic waves.

compared with the sound speed of 1.45 X 10° m/s. At all laboratory field strengths
the Alfvén velocity is much less than the speed of sound. In astrophysical prob-
lems, on the other hand, the Alfvén velocity can become very large because of
the much smaller densities. In the sun’s photosphere, for example, the density is
of the order of 10™* kg/m® (~6 X 10?? hydrogen atoms/m®) so that v, = 10° B(T)
my/s. Solar magnetic fields appear to be of the order of 1 or 2 X 10°* T at the
surface, with much larger values around sunspots. For comparison, the velocity
of sound is of the order of 10* m/s in both the photosphere and the chromosphere.

The magnetic fields of these different waves can be found from the third
equation in (7.71):

E U1B0 for kL BO
w
B, =40 for the longitudinal k || B, (7.78)

k -
—— Byv; for the transverse k || B,
w

The magnetosonic wave moving perpendicular to B, causes compressions and
rarefactions in the lines of force without changing their direction, as indicated in
Fig. 7.12a. The Alfvén wave parallel to B, causes the lines of force to oscillate
back and forth laterally (Fig. 7.12b). In either case the lines of force are “frozen
in”” and move with the fluid.

Inclusion of the effects of fluid viscosity, finite, not infinite, conductivity, and
the displacement current add complexity to the analysis. Some of these elabo-
rations are treated in the problems.

7.8 Superposition of Waves in One Dimension; Group Velocity

In the preceding sections plane wave solutions to the Maxwell equations were
found and their properties discussed. Only monochromatic waves, those with a
definite frequency and wave number, were treated. In actual circumstances such
idealized solutions do not arise. Even in the most monochromatic light source or
the most sharply tuned radio transmitter or receiver, one deals with a finite (al-
though perhaps small) spread of frequencies or wavelengths. This spread may
originate in the finite duration of a pulse, in inherent broadening in the source,
or in many other ways. Since the basic equations are linear, it is in principle an
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elementary matter to make the appropriate linear superposition of solutions with
different frequencies. In general, however, several new features arise.

1. If the medium is dispersive (i.e., the dielectric constant is a function of the
frequency of the fields), the phase velocity is not the same for each frequency
component of the wave. Consequently different components of the wave
travel with different speeds and tend to change phase with respect to one
another.

2. In a dispersive medium the velocity of energy flow may differ greatly from
the phase velocity, or may even lack precise meaning.

3. In a dissipative medium, a pulse of radiation will be attenuated as it travels
with or without distortion, depending on whether the dissipative effects are
or are not sensitive functions of frequency.

The essentials of these dispersive and dissipative effects are implicit in the
ideas of Fourier series and integrals (Section 2.8). For simplicity, we consider
scalar waves in only one dimension. The scalar amplitude u(x, t) can be thought
of as one of the components of the electromagnetic field. The basic solution to
the wave equation has been exhibited in (7.6). The relationship between fre-
quency » and wave number k is given by (7.4) for the electromagnetic field.
Either o or k can be viewed as the independent variable when one considers
making a linear superposition. Initially we will find it most convenient to use k
as an independent variable. To allow for the possibility of dispersion we will
consider  as a general function of k:

o=k (1.719)

Since the dispersive properties cannot depend on whether the wave travels to
the left or to the right, @ must be an even function of k, w(—k) = w(k). For most
wavelengths w is a smoothly varying function of k. But, as we have seen in Section
7.5, at certain frequencies there are regions of “anomalous dispersion” where w
varies rapidly over a narrow interval of wavelengths. With the general form
(7.79), our subsequent discussion can apply equally well to electromagnetic
waves, sound waves, de Broglie matter waves, etc. For the present we assume
that k and (k) are real, and so exclude dissipative effects.

From the basic solutions (7.6) we can build up a general solution of the form

ux, t) = -—\/1; Jj,,, A(k)exie®k)r gk (7.80)

The factor 1\/2_77 has been inserted to conform with the Fourier integral notation
of (2.44) and (2.45). The amplitude A(k) describes the properties of the linear
superposition of the different waves. It is given by the transform of the spatial
amplitude u(x, ), evaluated at t = 0*:

Ak) = —\/1_2_Tr j:, u(x, 0)e™ ™ dx (7.81)

If u(x, 0) represents a harmonic wave e"* for all x, the orthogonality relation
(2.46) shows that A(k) = V2w 8(k — ko), corresponding to a monochromatic

*The following discussion slights somewhat the initial-value problem. For a second-order differential
equation we must specify not only u(x, 0) but also du(x, 0)/3r. This omission is of no consequence for
the rest of the material in this section. It is remedied in the following section.
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traveling wave u(x, t) = eo*~“& ag required. If, however, at ¢ = 0, u(x, 0)
represents a finite wave train with a length of order Ax, as shown in Figure 7.13,
then the amplitude A(k) is not a delta function. Rather, it is a peaked function
with a breadth of the order of Ak, centered around a wave number k,, which is
the dominant wave number in the modulated wave u(x, 0). If Ax and Ak are
defined as the rms deviations from the average values of x and k [defined in terms
of the intensities |u(x, 0)]* and |A(k)[?], it is possible to draw the general
conclusion:

Ax Ak =1 (7.82)

The reader may readily verify that, for most reasonable pulses or wave packets
that do not cut off too violently, Ax times Ak lies near the lower limiting value
in (7.82). This means that short wave trains with only a few wavelengths present
have a very wide distribution of wave numbers of monochromatic waves, and
conversely that long sinusoidal wave trains are almost monochromatic. Relation
(7.82) applies equally well to distributions in time and in frequency.

The next question is the behavior of a pulse or finite wave train in time. The
pulse shown at ¢ = 0 in Fig. 7.13 begins to move as time goes on. The different
frequency or wave-number components in it move at different phase velocities.
Consequently there is a tendency for the original coherence to be lost and for
the pulse to become distorted in shape. At the very least, we might expect it to
propagate with a rather different velocity from, say, the average phase velocity
of its component waves. The general case of a highly dispersive medium or a
very sharp pulse with a great spread of wave numbers present is difficult to treat.
But the propagation of a pulse which is not too broad in its wave-number spec-
trum, or a pulse in a medium for which the frequency depends weakly on wave
number, can be handled in the following approximate way. The wave at time ¢
is given by (7.80). If the distribution A(k) is fairly sharply peaked around some
value ko, then the frequency w(k) can be expanded around that value of k:

dw
w(k) = wy + @

(k — ko) + - - (7.83)
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and the integral performed. Thus

e lko(dwldilg—anlt
V2w

From (7.81) and its inverse it is apparent that the integral in (7.84) is just u(x’, 0),
where x' = x — (dw/dk)|, t:

dw
u(x, t) = u(x - tﬂ

u(x, f) = f A(k)e'lx—@uidlotic gl (7.84)

’ O) ilkodwidi)lo—wylt (7.85)
0

This shows that, apart from an overall phase factor, the pulse travels along un-
distorted in shape with a velocity, called the group velocity:

do
dk|,

If an energy density is associated with the magnitude of the wave (or its absolute
square), it is clear that in this approximation the transport of energy occurs with
the group velocity, since that is the rate at which the pulse travels along.

For light waves the relation between w and k is given by

<k
n(k)
where ¢ is the velocity of light in vacuum, and n(k) is the index of refraction
expressed as a function of k. The phase velocity is

w(k c
b, = ___k) - 5  (188)
and is greater or smaller than ¢ depending on whether n(k) is smaller or larger
than unity. For most optical wavelengths n(k) is greater than unity in almost all
substances. The group velocity (7.86) is

Vg = (7.86)

w(k) = (7.87)

[
Ys T () + o(dnidw)

In this equation it is more convenient to think of n as a function of w than of k.
For normal dispersion (dn/dw) > 0, and also n > 1; then the velocity of energy
flow is less than the phase velocity and also less than c. In regions of anomalous
dispersion, however, dn/dw can become large and negative as can be inferred
from Fig. 7.8. Then the group velocity differs greatly from the phase velocity,
often becomirnig larger than ¢ or even negative. The behavior of group and phase
velocities as a function of frequency in the neighborhood of a region of anoma-
lous dispersion is shown in Fig. 7.14. There is no cause for alarm that our ideas
of special relativity are violated; group velocity is generally not a useful concept
in regions of anomalous dispersion. In addition to the existence of significant
absorption (see Fig. 7.8), a large dn/dw is equivalent to a rapid variation of @
with k. Consequently the approximations made in (7.83) and following equations
are no longer valid. Usually a pulse with its dominant frequency components in
the neighborhood of a strong absorption line is absorbed and distorted as it
travels. As shown by Garret and McCumber,* however, there are circumstances

(7.89)

*C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970).
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Figure 7.14 Index of refraction n(w)
as a function of frequency w at a
region of anomalous dispersion; phase
velocity v, and group velocity v, as
functions of w.

in which “group velocity” can still have meaning, even with anomalous disper-
sion. Other authors* subsequently verified experimentally what Garrett and
McCumber showed theoretically: namely, if absorbers are not too thick, a
Gaussian pulse with a central frequency near an absorption line and with support
narrow compared to the width of the line (puise wide in time compared to 1/7)
propagates with appreciable absorption, but more or less retains its shape, the
peak of which moves at the group velocity (7.89), even when that quantity'is
negative. Physically, what occurs is pulse reshaping—the leading edge of the
pulse is less attenuated than the trailing edge. Conditions can be such that the
peak of the greatly attenuated pulse emerges from the absorber before the peak
of the incident pulse has entered it! (That is the meaning of negative group
velocity.) Since a Gaussian pulse does not have a sharply defined front edge,
there is no question of violation of causality. .

Some experiments are described as showing that photons travel faster than
the speed of light through optical “pand-gap” devices that reflect almost all of
the incident flux over a restricted range of frequencies. While it is true that the
centroid of the very small transmitted Gaussian pulse appears slightly in advance
of the vacuum transit time, no signal or information travels faster than c. The
main results are explicable in conventional classical terms. Some aspects are ex-
amined in Problems 7:9-7.11. A review of these and other experiments has been
given by Chiao and Steinberg.’

7.9 [Illustration of the Spreading of a Pulse as It Propagates
in a Dispersive Medium

To illustrate the ideas of the preceding section and to show the validity of the
concept of group velocity, we now consider a specific model for the dependence

*§. Chu and S. Wong, Phys. Rev. Letters 48, 738 (1982); A. Katz, R. R. Alfano, S. Chu, and S. Wong,
Phys. Rev. Letters 49, 1292 (1982).

tR. Y. Chiao and A. M. Steinberg, in Progress in Optics, Vol. 37, ed. E. Wolf, Elsevier, Amsterdam
(1997), p. 347-406.
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and time derivative du(x, 0)/or. If we agree to take the real part of (7.80) to obtain

u(x, 1),
u(x, t) = 11 f ) A(k)e*—twr g + . (7.90)
) 2Vr J-o
then it is easy to show that A(k) is given in terms of the initial values by:
Ak) = \/%71 f_: e‘”"‘[u(x, 0) + jk) (;—l; (x, O)] dx (7.91)
We take a Gaussian modulated oscillation
u(x, 0) = e~=72L% ;¢ kox (7.92)

as the initial shape of the pulse. For simplicity, we will assume that
‘;—’t‘ *, 0) = 0 (7.93)

This means that at times immediately before ¢t = 0 the wave consisted of two
pulses, both moving toward the origin, such thatat¢ = @ they coalesced into the
shape given by (7.92). Clearly at later times We expect each pulse to reemerge
on the other side of the origin. Consequently the initial distribution (7.92) may
be expected to split into two identical packets, one moving to the left and one
to the right. The Fourier amplitude A(k) for the pulse described by (7.92) and
(7.93) is

1 “ 7 2 2
A(k) = —f e~ e 2L 6os kox dx
( V2mJ-w (7.94)
L

et [e—(Lz/z)(k—ko)2 + e—(L2/2)(k+k0)2]
2

The symmetry A(—k) = A(k) is a reflection of the presence of two pulses trav-
eling away from the origin, as is seen below.

To calculate the waveform at later times, we must specify @ = w(k). As a
model allowing exact calculation and showing the essential dispersive effects, we
assume

o(k) = u<1 + ?) (7.95)

where vis a constant frequency, and a is a constant length that is a typical wave-
length where dispersive effects become important. Equation (7.95) is an approx-
imation to the dispersion equation of the tenuous plasma, (7.59) or (7.61). Since
the pulse (7.92) is a modulated wave of wave number k = k,, the approximate
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arguments of the preceding section imply that the two pulses will travel with the
group velocity

d
v, = d—"‘(’ (ko) = va’ko (7.96)

and will be essentially unaltered in shape provided the pulse is not too narrow
in space.

The exact behavior of the wave as a function of time is given by (7.90), with
(7.94) for A(k):

u(x, t) =

L ge f ] [e- @t . gL k+ko)] gix i+ @RI g
2Viw —=
V (1.97)

The integrals can be performed by appropriately completing the squares in the
exponents. The result is

u(x, t) =
( )
- 2 2
expl — (x— k(;t)
) ia*vt
1o o 2L (1 + L2 ) a*k3 P )
zRe o expl ikox — v 1+~ )| + (ko = —ko)
ia*vt
v =
\ J

(7.98)

Equation (7.98) represents two pulses traveling in opposite directions. The peak
amplitude of each pulse travels with the group velocity (7.96), while the rgmdu-
lation envelop remains Gaussian in shape. The width of the Gaussian is not
constant, however, but increases with time. The width of the envelope is

e[ (2]

Thus the dispersive effects on the pulse are greater (for a givep elapsed.time),
the sharper the envelope. The criterion for a small change in shape is that

L >> a. Of course, at long times the width of the Gaussian increases linearly with
time

(7.99)

a‘vt

100
3 (7.100)

L() -
but the time of attainment of this asymptotic form depends on the ratio (L/a).
A measure of how rapidly the pulse spreads is provided by a comparison of L(t)
given by (7.99), with v,¢ = wa?k,t. Figure 7.15 shows two examples Qf curves of
the position of peak amplitude (v,f) and the positions vt = L(2), whlc_h indicate
the spread of the pulse, as functions of time. On the left the pulse is not too
narrow compared to the wavelength ko and so does not spread too rapidly. The
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Figure 7.15 Change in shape of a wave packet as it travels along. The broad packet,
containing many wavelengths (k,L > 1), is distorted comparatively little, while the
narrow packet (koL =< 1) broadens rapidly.

pulse on the right, however, is so narrow initially that it is very rapidly spread
out and scarcely represents a pulse after a short time.

Although the results above have been derived for a special choice (7.92) of
initial pulse shape and dispersion relation (7.95), their implications are of a more
general nature. We saw in Section 7.8 that the average velocity of a pulse is the
group velocity v, = dw/dk = o'. The spreading of the pulse can be accounted
for by noting that a pulse with an initial spatial width Ax, must have inherent in
it a spread of wave numbers Ak ~ (1/Ax,). This means that the group velocity,
when evaluated for various k values within the pulse, has a spread in it of the
order g

1"

Av, ~ o Ak ~ 2 SN CAT

AXQ

At a time ¢ this implies a spread in position of the order of Av,t. If we combine
the uncertainties in position by taking the Square root of the sum of squares, we
obtain the width Ax(t) at time ¢:

2, (@)
Ax(t) = _[(Axo)* + ( Ax0> (7.102)

We note that (7.102) agrees exactly with (7.99) if we put Axo = L. The expression
(7.102) for Ax(z) shows the general result that, if o” # 0, a narrow pulse spreads
rapidly because of its broad Spectrum of wave numbers, and vice versa. All these
ideas carry over immediately into wave mechanics. They form the basis of the

The problem of wave packets in a dissipative, as well as dispersive, medium
is rather complicated. Certain aspects can be discussed analytically, but the an-

- alytical expressions are not readily interpreted physicaily. Except in special cir-

cumstances, wave packets are attenuated and distorted appreciably as they prop-
agate. The reader may refer to Stratton (pp- 301-309) for a discussion of the
problem, including numerical examples,
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7.10 Causality in the Connection Between D and E;
Kramers—Kronig Relations

A. Nonlocality in Time

Another consequence of the frequency dependence of e(w) is a temporally
nonlocal connection between the displacement D(x, ¢) and the electric field
E(x, ). If the monochromatic components of frequency w are related by

D(x, ») = e(w)E(x, ») (7.103)

the dependence on time can be constructed by Fourier superposition. Treating
the spatial coordinate as a parameter, the Fourier integrals in time and frequency
can be written

1 f - .
D(x, t) = — D(x, we " d
0= 57 ). Pl @) do
and ) (7.104)
1 J’ ® or
D(x, = — D(x, t)Ye™" dr'
(% 0) = 7= |__Dx 1)
with corresponding equations for E. The substitution of (7.103) for D(x, w) gives
1 (" .
D(x, ) = Vo f_m e(w)E(x, w)e ™ dw
We now insert the Fourier representation of E(x, w) into the integral and obtain
= i J‘“’ ~iwt f’” t Liwt ’
D(x, 1) = ) dw e(w)e . dr' e" E(x, t')

With the assumption that the orders of integration can be interchanged, the last
expression can be written as

D(x,¢) = eO{E(x, ) + f G(NE(x,t — 7) d'r} (7.105)
where G(7) is the Fourier transform of y, = e(w)e, — 1:
G(7) = zif [e(w)e, — 1]e™" dw (7.106)
M-

Equations (7.105) and (7.106) give a nonlocal connection between D and E, in
which D at time ¢ depends on the electric field at times other than £.* If e(w) is

*Equations (7.103) and (7.105) are recognizable as an example of the faltung theorem of Fourier
integrals: if A(r), B(r), C(t) and a(w), b(w), c(w) are two sets of functions related in pairs by the
Fourier inversion formulas (7.104), and

c(w) = a(w)b(w)

then, under suitable restrictions concerning integrability,

c(r) = # J: A({)B( - ) ar
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independent of  for all o, (7.106) yields G(7) < 8(7) and the instantaneous
connection is obtained, but if e(w) varies with o, G(7) is nonvanishing for some
values of  different from zero.

B. Simple Model for G(3), Limitations

To illustrate the character of the connection implied by (7.105) and (7.106)
we consider a one-resonance version of the index of refraction (7.51):

e(w)e — 1 = B} — o — iyw)™" - (7107)
The susceptibility kernel G(7) for this model of e(w) is

—-un'r

G(r) = — f P —— d 7.108
Q] ——_—l (7.108)
The integral can be evaluated by contour integration. The integrand has poles in
the lower half-w-plane at

mz = —% * where 13 = o — 12 (7.109)

4
For 7 < 0 the contour can be closed in the upper half-plane without affecting the
value of the integral. Since the integrand is regular inside the closed contour,
the integral vanishes. For 7> 0, the contour is closed in the lower half-plane and
the integral is given by —2i times the residues at the two poles. The kernel
(7.108) is therefore
o3 Sm Vo’r

G(7) = wle™ ™ 0(1') (7.110)

Y

where 6(7) is the step function [8(7) = 0 for 7 < 0; 8(r) = 1 for 7 > 0]. For the
dielectric constant (7.51) the kernel G(7) is just a linear superposition of terms
like (7.110). The kernel G(7) is oscillatory with the characteristic frequency of
the medium and damped in time with the damping constant of the electronic
oscillators. The nonlocality in time of the connection between D and E is thus
confined to times of the order of y ™. Since vy is the width in frequency of spectral
lines and these are typically 10’-10° s™*, the departure from simultaneity is of
the order of 1077-107° s. For frequencies above the microwave region many
cycles of the electric field oscillations contribute an average weighed by G(‘T) to
the displacement D at a given instant of time.

Equation (7.105) is nonlocal in time, but not in space. This approximation is
valid provided the spatial variation of the applied fields has a scale that is large
compared with the dimensions involved in the creation of the atomic or molecular
polarization. For bound charges the latter scale is of the order of atomic dimen-
sions or less, and so the concept of a dielectric constant that is a function only of
w can be expected to hold for frequencies well beyond the visible range. For
conductors, however, the presence of free charges with macroscopic mean free
paths makes the assumption of a simple e(w) or o(w) break down at much lower
frequencies. For a good conductor like copper we have seen that the damping
constant (corresponding to a collision frequency) is of the order of y, ~ 3 X 10"
s7! at room temperature. At liquid helium temperatures, the damping constant
may be 107> times the room temperature value. Taking the Bohr velocity in
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hydrogen (c/137) as typical of electron velocities in metals, we find mean free
paths of the order L ~ c/(137y) ~ 10~ m at liquid helium temperatures, On
the other hand, the conventional skin depth 6 (7.77) can be much smaller, of the
order of 1077 or 10~8 m at microwave frequencies. In such circumstances, Ohm’s
law must be replaced by a nonlocal expression. The conductivity becomes a tep.
sorial quantity depending on wave number k and frequency w. The associated
departures from the standard behavior are known collectively as the anomaloys
skin effect. They can be utilized to map out the Fermi surfaces in metals. * Similar
nonlocal effects occur in superconductors where the electromagnetic properties
involve a coherence length of the order of 10~¢ m.t With this brief mention of
the limitations of (7.105) and the areas where generalizations have been fruitfu]
we return to the discussion of the physical content of (7.105).

C. Causality and Analyticity Domain of e, w)

The most obvious and fundamental feature of the kernel (7.110) is that it
vanishes for T < 0. This means that at time ¢ only values of the electric field prior
to that time enter in determining the displacement, in accord with our funda-
mental ideas of causality in physical phenomena. Equation (7.105) can thus be
written

D(x, t) = GO{E(X, ) + f: G(nE(x, t — 7) d’T} (7.111)

This is, in fact, the most general spatially local, linear, and causal relation that
can be written between D and E in a uniform isotropic medium. Its validity
transcends any specific model of €(w). From (7.106) the dielectric constant can
be expressed in terms of G(7) as

€(w)ey =1 + fo G(r)e " dr (7.112)

This relation has several interesting consequences. From the reality of D, E, and
therefore G(7) in (7.111) we can deduce from (7.112) that for complex w,

€(—w)ley = e*(w*)/e, (7.113)

Furthermore, if (7.112) is viewed as a representation of e(w)/e, in the complex
w plane, it shows that €(w)/eo is an analytic function of w in the upper half-plane,
provided G(7) is finite for all 7. On the real axis it is necessary to invoke
the “physically reasonable” requirement that G(r) — 0 as 7 — « to assure that
e(w)/e, is also analytic there. This is true for dielectrics, but not for conductors,
where G(1) — o/e, as 1~ o and €(w)/€ has a simple pole at w = 0 (e—iolw
as w — 0). Apart, then, from a possible pole at w = 0, the dielectric constant
€(w)/€o is analytic in w for Im w = Q as a direct result of the causal relation (7.111)

*A. B. Pippard, in Reports on Progress in Physics 23, 176 (1960), and the article entitled “The Dy-
namics of Conduction Electrons,” by the same author in Low-Temperature Physics, Les Houches
Summer School (1961), eds. C. de Witt, B. Dreyfus, and P. G. de Gennes, Gordon and Breach, New
York (1962). The latter article has been issued separately by the same publisher.

"See, for example, the article “‘Superconductivity” by M. Tinkham in Low Temperature Physics, op.
cit.
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between D and E. These properties can be verified, of course, for the models
discussed in Sections 7.5.A and 7.5.C,

The behavior of e(w)/e; — 1 for large w can be related to the behavior‘ of
G(7) at small times. Integration by parts in (7.112) leads to the asymptotic series,

lzﬁ(_o)__G_l(_(_)l_F...

()

e(w)le —

where the argument of G and its derivatives is r = 0*. It is unphysical to have
G(07) = 0, but G(0*) # 0. Thus the first term in the series is absent, and
€(w)/eo — 1 falls off at high frequencies as w2, just as was found in (7.59) for the
oscillator model. The asymptotic series shows, in fact, that the real and imaginary
parts of e(w)/e; — 1 behave for large real w as

Rele(w)le, — 1] = o(%), Im e(w)le, = 0(;13) (7.114)

These asymptotic forms depend only upon the existence of the derivatives of
G(r) around 7 = 0*.

D. Kramers-Kronig Relations

The analyticity of €(w)/€, in the upper half-w-plane permits the use of Cau-
chy’s theorem to relate the real and imaginary part of €(w)/€; on the real axis.
For any point z inside a closed contour C in the upper half-w-plane, Cauchy’s
theorem gives

1 [e(w)eg - 1] |,
€(2)e =1+ e w2 dw
The contour C is now chosen to consist of the real w axis and a great semicircle
at infinity in the upper half-plane. From the asymptotic expansion just discussed
or the specific results of Section 7.5.D, we see that /e, — 1 vanishes sufficiently
rapidly at infinity so that there is no contribution to the integral from the great
semicircle. Thus the Cauchy integral can be written

® Vey — 1

e(2)lep = 1 + —— f le@)e ~ 1) (7.115)
2miJ-w o -z

where z is now any point in the upper half-plane and the integral is taken aloqg

the real axis. Taking the limit as the complex frequency approaches the real axis

from above, we write z = w + i§ in (7.115):

1 {7 [e(o)e — 1]
= — —r———d’ 7.116
e(w)/€y 1+2m’ o w5 Y ( )
For real  the presence of the i§ in the denominator is a mnempnic for'tl'le
distortion of the contour along the real axis by giving it an infinitesimal semicir-

cular detour below the point w' = w. The denominator can be written formally
as

1 = P( - 1 ) + 7id(o' — w) (7.117)
)

o — w-—id
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where P means principal part. The delta function serves to pick up the contri.
bution from the small semicircle going in a positive sense halfway around the -
pole at ' = w. Use of (7.117) and a simple rearrangement turns (7.116) into

1 fm [e(w')e — 1] :
/e, = + — Az, 4 '
e(w)e; = 1 — P . do (7.118)
The real and imaginary parts of this equation are
Re e(w)le; = 1 + 1 Pf M do’
T Ve 0 - w (7.119)
Im e(w)/e, = 1 Pf [Re E(?) Veo — 1] do'
T Jew )

These relations, or the ones recorded immediately below, are called Kramers—
Kronig relations or dispersion relations. They were first derived by H. A. Kramers
(1927)and R. de L. Kronig (1926) independently. The symmetry property (7.113)
shows that Re e(w) is even in ®, while Im €(w) is odd. The integrals in (7.119)
can thus be transformed to span only positive frequencies:

Re e(w)/e; = 1 + ng
7 Jo

o? — o (7.120)
Im e(w)/e, = _Z;w PJ; [Re Zg:)z/eiz_ 1] do'

In writing (7.119) and (7.120) we have tacitly assumed that e(w)/e, was regular
at @ = 0. For conductors the simple pole at w = 0 can be exhibited separately
with little further complication,

The Kramers~Kronig relations are of very general validity, following from
little more than the assumption of the causal connection (7.111) between the
polarization and the electric field. Empirical knowledge of Im €(w) from absorp-
tion studies allows the calculation of Re €(w) from the first equation in (7.120).
The connection between absorption and anomalous dispersion, shown in Fig. 7.8,
is contained in the relations. The presence of a very narrow absorption line or
band at w = w, can be approximated by taking

Im e(w’) =;T—K o' — w) + ---
wp

where X is a constant and the dots indicate the other (smoothly varying) contri-
butions to Im . The first equation in (7.120) then yields
K

Re e(w) = € + m (7121)
for the behavior of Re €(w) near, but not exactly at, w = w,. The term & represents
the slowly varying part of Re ¢ resulting from the more remote contributions to
Im €. The approximation (7.121) exhibits the rapid variation of Re e(w) in the
neighborhood of an absorption line, shown in Fig. 7.8 for lines of finite width. A
more realistic description for Im e would lead to an expression for Re € in com-
plete accord with the behavior shown in Fig. 7.8. The demonstration of this is
left to the problems at the end of the chapter.
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Relations of the general type (7.119) or (7.120) connecting the dispersive and
absorptive aspects of a process are extremely useful in all areas of physics. Their
widespread application stems from the very small number of physically well-
founded assumptions necessary for their derivation. References to their appli-
cation in particle physics, as well as solid-state physics, are given at the end of
the chapter. We end with mention of two sum rules obtainable from (7.120). It
was shown in Section 7.5.D, within the context of a specific model, that the di-
electric constant is given at high frequencies by (7.59). The form of (7.59) is, in
fact, quite general, as shown above (Section 7.10.C). The plasma frequency can
therefore be defined by means of (7.59) as

o = im{e?[1 — e(w)/eg)}

Provided the falloff of Im e(w) at high frequencies is given by (7.114), the first
Kramers-Kronig relation yields a sum rule for oZ:

o = %L o Im e(w)/e, dw (7.122)
This relation is sometimes known as the sum rule for oscillator strengths. It can
be shown to be equivalent to (7.52) for the dielectric constant (7.51), but is ob-
viously more general.

The second sum rule concerns the integral over the real part of e(w)
and follows from the second relation (7.120). With the assumption that
[Re e(w') & — 1] = —w}/w™? + O(Vw') for all @' > N, it is straightforward to
show that for @ > N

2 w[Z’ N , ’ 1 N .
Im e(w)e, = o B + fo [Re e€(w') ey — 1] do' { + O pe

It was shown in Section 7.10.C that, excluding conductors and barring the un-
physical happening that G(0*) # 0, Im €(w) behaves at large frequencies as w™>.
It therefore follows that the expression in curly brackets must vanish. We are
thus led to a second sum rule,

2

1 v o}
5 fo Re e(w)ley dw = 1 + 7 (7.123)

which, for N — o, states that the average value of Re e(w)/¢, over all frequencies
is equal to unity. For conductors, the plasma frequency sum rule (7.122) still
holds, but the second sum rule (sometimes called a superconvergence relation)
has an added term —70/2¢,N, on the right hand side (see Problem 7.23). These
optical sum rules and several others are discussed by Altarelli et al.*

7.11 Arrival of a Signal After Propagation Through
a Dispersive Medium

Some of the effects of dispersion have been considered in the preceding sections.
There remains one important aspect, the actual arrival at a remote point of a

*M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, Phys. Rev. B6, 4502 (1972).



336 Chapter 7 Plane Electromagnetic Waves and Wave Propagation—SI

wave train that initially has a well-defined beginning. How does the signal builq
up? If the phase velocity or group velocity is greater than the velocity of light in
vacuum for important frequency components, does the signal propagate faster
than allowed by causality and relativity? Can the arrival time of the disturbance
be given an unambiguous definition? These questions were examined authori.
tatively by Sommerfeld and Brillouin in papers published in Annalen der Physik
in 1914.* The original papers, plus subsequent work by Brillouin, are contained
in English translation in the book, Wave Propagation and Group Velocity, by
Brillouin. A briefer account is given in Sommerfeld’s Optics, Chapter IT1. A com-
plete discussion is lengthy and technically complicated.! We treat only the qual-
itative features. The reader can obtain more detail in the cited literature or the
second edition of this book, from which the present account is abbreviated.

For definiteness we consider a plane wave train normally incident from vac-
uum on a semi-infinite uniform medium of index of refraction n(w) filling the
region x > 0. From the Fresnel equations (7.42) and Problem 7.20, the amplitude
of the electric field of the wave for x > 0 is given by

)

- 2 . i
u(x, r) = f [m]A(w)e”‘(‘”)"““‘ do (7.124)

where
1 ” few)
Aw) =5 f_m u;(0, )e™* dt (7.125)

is the Fourier transform of the real incident electric field u;(x, ) evaluated just
outside the medium, at x = 0~. The wave number k(w) is

k(o) = % n(w) (7.126)

and is generally complex, with positive imaginary part corresponding to absorp-
tion of energy during propagation. Many media are sufficiently transparent that
the wave number can be treated as real for most purposes, but there is always
some damping present. [Parenthetically we observe that in (7.124) frequency, not
wave number, is used as the independent variable. The change from the practice
of Sections 7.8 and 7.9 is dictated by the present emphasis on the time develop-
ment of the wave at a fixed point in space.]

We suppose that the incident wave has a well-defined front edge that reaches
x = 0 not before ¢t = 0. Thus u(0, t) = 0 for + < 0. With additional physically
reasonable mathematical requirements, this condition on (0, ¢) assures that A(w)
is analytic in the upper half-w-plane [just as condition (7.112) assured the anal-
yticity of €(w) there]. Generally, A(w) will have singularities in the lower half-cw-
plane determined by the exact form of u(x, t). We assume that A(w) is bounded
for |w| — .

The index of refraction n(w) is crucial in determining the detailed nature of
the propagation of the wave in the medium. Some general features follow, how-

*A Sommerfeld, Ann. Phys (Leipzig) 44,177 (1914). L. Brillouin, Ann. Phys. (Leipzig) 44,203 (1914).

*An exhaustive treatment is given in K. E. Oughstun and G. C. Sherman, Electromagnetic Pulse
Propagation in Causal Dielectrics, Springer-Verlag, Berlin (1994).
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ever, from the global properties of n(w). Just as €(w) is analytic in the upper half-
w-plane, so is n(w). Furthermore, (7.59) shows that for |w| —» «, n(w) —
1 — w2/2?. A simple one-resonance model of n(w) based on (7.51), with resonant
frequency w, and damping constant y, leads to the singularity structure shown in
Fig. 7.16. The poles of e(w) become branch cuts in 7(w). A multiresonance ex-
pression for € leads to a much more complex cut structure, but the upper plane
analyticity and the asymptotic behavior for large | w| remain.

The proof that no signal can propagate faster than the speed of light in
vacuum, whatever the detailed properties of the medium, is now straightforward.
We consider evaluating the amplitude (7.124) by contour integration in the com-
plex w plane. Since n(w) — 1 for |w| — =, the argument of the exponential in
(7.124) becomes

i () = i@ — ] > 2E =D

for large |w|. Evidently, we obtain a vanishing contribution to the integral by
closing the contour with a great semicircle at infinity in the upper half-plane for
x > ct and in the lower half-plane for x < ct. With n(w) and A(w) both analytic
in the upper half-w-plane, the whole integrand is analytic there. Cauchy’s theo-
rem tells us that if the contour is closed in the upper half-plane (x > ct), the
integral vanishes. We have therefore established that

u(x, ) =0  for (x — ct) > 0 (7.127)

provided only that A(w) and n(w) are analytic for Im @ > 0 and n(w) — 1 for
| @] — . Since the specific form of n(w) does not enter, we have a general proof
that no signal propagates with a velocity greater than c, whatever the medium..
For ct > x, the contour is to be closed in the lower half-plane, enveloping
the singularities. The integral is dominated by different singularities at different

Imw ,
w2 Wo wi
Ll Il
x X Ly T % Re w
L -f 1--— L]
wp wd 2 We Wa

Figure 716 Branch cuts defining the singularities of a simple one-resonance model for
the index of refraction n(w). For transparent media the branch cuts lie much closer to
(but still below) the real axis than shown here. More realistic models for #(w) have
more complicated cut structures, all in the lower half-w-plane. The crosses mark the
possible locations of singularities of A(w).



